3.131 \(\int \frac{(g \cos (e+f x))^{3/2}}{\sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=121 \[ \frac{2 (g \cos (e+f x))^{5/2}}{f g \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac{2 g \sqrt{\cos (e+f x)} E\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{g \cos (e+f x)}}{c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

[Out]

(2*(g*Cos[e + f*x])^(5/2))/(f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]
*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.570069, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {2852, 2842, 2640, 2639} \[ \frac{2 (g \cos (e+f x))^{5/2}}{f g \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac{2 g \sqrt{\cos (e+f x)} E\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{g \cos (e+f x)}}{c f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(g*Cos[e + f*x])^(3/2)/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(2*(g*Cos[e + f*x])^(5/2))/(f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]
*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2852

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^
n)/(a*f*g*(2*m + p + 1)), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 2842

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(g*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(g \cos (e+f x))^{3/2}}{\sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx &=\frac{2 (g \cos (e+f x))^{5/2}}{f g \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac{\int \frac{(g \cos (e+f x))^{3/2}}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}} \, dx}{c}\\ &=\frac{2 (g \cos (e+f x))^{5/2}}{f g \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac{(g \cos (e+f x)) \int \sqrt{g \cos (e+f x)} \, dx}{c \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{2 (g \cos (e+f x))^{5/2}}{f g \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac{\left (g \sqrt{\cos (e+f x)} \sqrt{g \cos (e+f x)}\right ) \int \sqrt{\cos (e+f x)} \, dx}{c \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{2 (g \cos (e+f x))^{5/2}}{f g \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac{2 g \sqrt{\cos (e+f x)} \sqrt{g \cos (e+f x)} E\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{c f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.764301, size = 148, normalized size = 1.22 \[ \frac{2 (g \cos (e+f x))^{3/2} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (\sqrt{\cos (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+E\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )-\cos \left (\frac{1}{2} (e+f x)\right )\right )\right )}{c f \cos ^{\frac{3}{2}}(e+f x) \sqrt{a (\sin (e+f x)+1)} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(2*(g*Cos[e + f*x])^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(EllipticE[(e + f*x)/2, 2]*(-Cos[(e + f*x)/2]
+ Sin[(e + f*x)/2]) + Sqrt[Cos[e + f*x]]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])))/(c*f*Cos[e + f*x]^(3/2)*Sqrt[
a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.376, size = 925, normalized size = 7.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x)

[Out]

-1/2/f*(g*cos(f*x+e))^(3/2)*(-1+cos(f*x+e))^2*(-1+sin(f*x+e))*(4*I*sin(f*x+e)*cos(f*x+e)^2*EllipticF(I*(-1+cos
(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^
2)^(1/2)-4*I*sin(f*x+e)*cos(f*x+e)^2*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f
*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)+8*I*sin(f*x+e)*cos(f*x+e)*EllipticF(I*(-1+cos
(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^
2)^(1/2)-8*I*sin(f*x+e)*cos(f*x+e)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x
+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)+4*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f
*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)-4*I*
(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticE(I*(-
1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)-4*sin(f*x+e)*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-ln(-2*(2*c
os(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1
/2)-1)/sin(f*x+e)^2)*cos(f*x+e)*sin(f*x+e)+cos(f*x+e)*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)
-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*sin(f*x+e)+4*cos(f*x+e)^2*(
-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)-4*(-cos(f*x+e)/(cos(f*x+
e)+1)^2)^(1/2))/(cos(f*x+e)+1)/sin(f*x+e)^5/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)/(-c*(-1+sin(f*x+e)))^(3/2)/(a
*(1+sin(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}}}{\sqrt{a \sin \left (f x + e\right ) + a}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{g \cos \left (f x + e\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} g}{a c^{2} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - a c^{2} \cos \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*g/(a*c^2*cos(f*x + e)*sin(f*
x + e) - a*c^2*cos(f*x + e)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}}}{\sqrt{a \sin \left (f x + e\right ) + a}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(3/2)), x)